首页> 外文OA文献 >A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts
【2h】

A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts

机译:分级贝叶斯模型量化溪流水温预报的不确定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i) an emotive simulated example, ii) application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.
机译:提供通用且具有成本效益的建模方法,以使用诸如气温和排水量等预测因子来重建和预测淡水温度,是了解潜在的水温和全球变暖对大陆水生生态系统影响的生态过程的前提。使用空气温度作为水温的简单线性预测因子可能会导致预测结果出现重大偏差,因为它不能消除季节性和信号的长期趋势。在这里,我们使用季节性正弦周期信号以及时变平均值和振幅,基于水温,空气温度和排水量的分层贝叶斯统计时间序列建模,开发一种替代方法。使用i)情感模拟示例,ii)在生物地理条件和大小不同的法国三大沿海河流中,将该方法的拟合和预测性能与水和气温之间的简单线性回归进行了比较。与线性回归相反,时间序列建模方法可以更好地拟合数据,并且在长期趋势中不显示预测偏差。这个新模型还可以对水温进行比线性回归更准确的预测,并且可以对预测周围的不确定性进行公正的评估。与经典回归方法相比,我们的分层贝叶斯模型预测的水温变暖更慢,更不确定。这些新的预测形式易于在进一步的生态分析中使用,并将对来自不同情景的结果进行加权,以管理气候变化对淡水野生动植物的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号